An implicit least squares algorithm for nonlinear rational model parameter estimation
نویسندگان
چکیده
منابع مشابه
Nonlinear Least-squares Estimation
The paper uses empirical process techniques to study the asymptotics of the least-squares estimator for the fitting of a nonlinear regression function. By combining and extending ideas of Wu and Van de Geer, it establishes new consistency and central limit theorems that hold under only second moment assumptions on the errors. An application to a delicate example of Wu’s illustrates the use of t...
متن کاملLeast-Squares Parameter Estimation Algorithm for a Class of Input Nonlinear Systems
This paper studies least-squares parameter estimation algorithms for input nonlinear systems, including the input nonlinear controlled autoregressive IN-CAR model and the input nonlinear controlled autoregressive autoregressive moving average IN-CARARMA model. The basic idea is to obtain linear-in-parameters models by overparameterizing such nonlinear systems and to use the least-squares algori...
متن کاملDecomposition Methods for Least Squares Parameter Estimation
In this paper least squares method with matrix decomposition is revisited and a multiple model formulation is proposed The proposed formulation takes advantage of the well established decomposition methods but possesses a multiple model structure which leads to simpler and more exible implementations and produces more infor mation than the original least squares methods Several application exam...
متن کاملAn Efficient Algorithm for the Separable Nonlinear Least Squares Problem
The nonlinear least squares problem miny,z‖A(y)z + b(y)‖, where A(y) is a full-rank (N + `)× N matrix, y ∈ Rn, z ∈ RN and b(y) ∈ RN+` with ` ≥ n, can be solved by first solving a reduced problem miny‖ f (y)‖ to find the optimal value y∗ of y, and then solving the resulting linear least squares problem minz‖A(y∗)z + b(y∗)‖ to find the optimal value z∗ of z. We have previously justified the use o...
متن کاملParameter Estimation of Jelinski-Moranda Model Based on Weighted Nonlinear Least Squares and Heteroscedasticity
Parameter estimation method of Jelinski-Moranda (JM) model based on weighted nonlinear least squares (WNLS) is proposed. The formulae of resolving the parameter WNLS estimation (WNLSE) are derived, and the empirical weight function and heteroscedasticity problem are discussed. The effects of optimization parameter estimation selection based on maximum likelihood estimation (MLE) method, least s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 2005
ISSN: 0307-904X
DOI: 10.1016/j.apm.2004.10.008